Pemilihan Skill Terbaik Menggunakan TOPSIS Berbasis OWA Untuk Game
Keywords:
Ordered Weighted Averaging, Permainan, Technique for Order Performance by Similarity to Ideal Solution, OWA-TOPSIS, skillAbstract
Perkembangan game modern, khususnya pada genre Role Playing Game (RPG), menghadirkan tantangan baru bagi pemain dalam menentukan strategi yang efektif melalui pemilihan skill. Banyaknya pilihan skill dengan karakteristik beragam, ditambah dengan dinamika situasi pertempuran, sering kali menyulitkan pemain dalam memilih strategi yang paling optimal. Untuk mengatasi permasalahan tersebut, penelitian ini mengusulkan sistem rekomendasi skill pada game Pedjoeang dengan mengintegrasikan metode Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) dan Ordered Weighted Averaging (OWA). Integrasi ini memanfaatkan keunggulan TOPSIS dalam menghitung kedekatan relatif terhadap solusi ideal, sekaligus fleksibilitas OWA dalam mendistribusikan bobot kriteria secara lebih adaptif. Sistem ini mengevaluasi enam alternatif skill terhadap enam kriteria, dengan bobot kriteria ditentukan melalui perhitungan OWA. Hasil pengujian menunjukkan bahwa Skill 5 memperoleh nilai closeness coefficient tertinggi (0,4846) dan menempati peringkat pertama, sedangkan Skill 4 mendapatkan nilai terendah (0,4538) dan berada pada peringkat terakhir. Selain itu, perbandingan antara TOPSIS konvensional dengan metode TOPSIS–OWA menunjukkan adanya perbedaan peringkat, khususnya pada Skill 3 dan Skill 4, yang membuktikan bahwa penerapan OWA meningkatkan sensitivitas sistem terhadap kriteria tertentu. Kontribusi utama penelitian ini adalah membuktikan efektivitas integrasi OWA pada metode TOPSIS dalam sistem rekomendasi berbasis game, yang mampu menghasilkan rekomendasi lebih adaptif dan kontekstual. Temuan ini memperkaya literatur mengenai pengambilan keputusan multikriteria di lingkungan interaktif serta membuka peluang penerapan pada genre game lain dengan kompleksitas lebih tinggi. Lebih jauh, pendekatan ini dapat meningkatkan pengalaman pemain melalui rekomendasi skill yang lebih cerdas, sehingga mendukung pengambilan keputusan strategis dalam gameplay yang dinamis.
References
S. Qomariah, A. Rangan, and A. Yusnita, “Peningkatan Pengetahuan Pembuatan Game dalam Rangka Pengenalan Industri Kreatif pada Siswa di Madrasah Aliyah An-Nur Samarinda,” BANTENESE J. Pengabdi. Masy., vol. 2, pp. 110–119, Dec. 2020, doi: 10.30656/ps2pm.v2i2.2872.
F. Nugroho et al., “2D Game Omar’s Adventure design using the Finite State Machine Method,” J. Informatics Telecommun. Eng., vol. 6, no. 1, pp. 18–26, 2022, doi: 10.31289/jite.v6i1.6327.
R. Kaban, F. Syahputra, and F. Fajrillah, “Perancangan Game RPG (Role Playing Game) ‘Nusantara Darkness Rises,’” J. Inf. Syst. Res., vol. 2, no. 4, pp. 235–246, 2021, doi: 10.47065/josh.v2i4.780.
F. T. Romadhona and E. Yundra, “Pengembangan Edugame sebagai Media Pembelajaran Berbasis Role Play Game (RPG) pada Mata Pelajaran Simulasi Digital Kelas X TAV di SMKN 3 Surabaya,” Pendidik. Tek. Elektro, vol. 07, no. 2, pp. 101–107, 2018.
M. Y. A. Muttakin, S. A. Wibowo, and R. Primaswara P., “Game Turn-Based Role Playing Game (Turn-Based Rpg) ‘Grand Line’ Dengan Unity Game Engine Berbasis Android Menggunakan Metode Hierarchial Dynamic Scripting,” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 254–261, 2020, doi: 10.36040/jati.v4i2.2705.
R. P. Pradana, M. Hariadi, R. F. Rachmadi, and Y. M. Arif, “A Multi-Criteria Recommender System For NFT Based IAP In RPG Game,” 2022 Int. Semin. Intell. Technol. Its Appl. Adv. Innov. Electr. Syst. Humanit. ISITIA 2022 - Proceeding, pp. 214–219, 2022, doi: 10.1109/ISITIA56226.2022.9855272.
T. D. Do, D. S. Yu, S. Anwer, and S. I. Wang, “Using Collaborative Filtering to Recommend Champions in League of Legends,” IEEE Conf. Comput. Intell. Games, CIG, vol. 2020-Augus, pp. 650–653, 2020, doi: 10.1109/CoG47356.2020.9231735.
H. Lee, D. Hwang, H. Kim, B. Lee, and J. Choo, “DraftRec: Personalized Draft Recommendation for Winning in Multi-Player Online Battle Arena Games,” WWW 2022 - Proc. ACM Web Conf. 2022, pp. 3428–3439, Apr. 2022, doi: 10.1145/3485447.3512278.
K. Rothmeier, N. Pflanzl, J. A. Hüllmann, M. Preuss, J. A. Hullmann, and M. Preuss, “Prediction of Player Churn and Disengagement Based on User Activity Data of a Freemium Online Strategy Game,” IEEE Trans. Games, vol. 13, no. 1, pp. 78–88, Mar. 2021, doi: 10.1109/TG.2020.2992282.
L. Zhang, C. Xu, Y. Gao, Y. Han, X. Du, and Z. Tian, “Improved Dota2 Lineup Recommendation Model Based on a Bidirectional LSTM,” TUP, 2020. doi: 10.26599/TST.2019.9010065.
L. Yan, N. Wang, and R. Chen, “Decoding On-Field Roles in Football: A Sociological Analysis Using Intelligent MCDM Algorithm With Fuzzy Information for Player Positioning and Technical-Tactical Behavior,” IEEE Access, vol. 13, pp. 32540–32563, 2025, doi: 10.1109/ACCESS.2025.3540952.
K. Wang, “Optimized Captain Selection Using Diffusion-Based Player Behavior Synthesis and Multicriteria Decision Making With Intuitionistic Rough Fuzzy Under Dombi-AHP and PROMETHEE Methods,” IEEE Access, vol. 13, pp. 78471–78489, 2025, doi: 10.1109/ACCESS.2025.3564619.
C. Xu and X. Yuan, “A Novel Intuitionistic Fuzzy Decision Support System Based on Extended WASPAS Method: A Case Study for the Selection of Basketball Players and Basketball Fields for Maximum Performance,” IEEE Access, vol. 13, pp. 81606–81617, 2025, doi: 10.1109/ACCESS.2025.3563998.
B. W. Majzoub, M. Shaheen, and N. H. Sherief, “A Hybrid Methodology for Gamification Element Ranking Based on Big Five Traits Using Neutrosophic MCDM: Personalized Approach for Educational Games,” in 2024 International Conference on Computer and Applications (ICCA), 2024, pp. 1–10. doi: 10.1109/ICCA62237.2024.10927846.
S. Chan, “AI-Facilitated Selection of the Optimal Nondominated Solution for a Serious Gaming Information Fusion Module,” in 2024 IEEE Gaming, Entertainment, and Media Conference (GEM), 2024, pp. 1–6. doi: 10.1109/GEM61861.2024.10585580.
N. Ghasemkhani, S. S. Vayghan, A. Abdollahi, B. Pradhan, and A. Alamri, “Urban development modeling using integrated fuzzy systems, ordered weighted averaging (OWA), and geospatial techniques,” Sustain., vol. 12, no. 3, p. 809, 2020, doi: 10.3390/su12030809.
Y. S. Sutyawati and B. Daniawan, “Enhancing Employee Motivation: A TOPSIS-Based Decision Support System for Incentive Allocation through Performance Evaluation,” MATICS J. Ilmu Komput. dan Teknol. Inf. (Journal Comput. Sci. Inf. Technol., vol. 16, no. 1, pp. 13–18, 2024, doi: 10.18860/mat.v16i1.23921.
L. Grgičević, E. M. Coates, T. I. Fossen, R. T. Bye, and O. L. Osen, “Centralised Decision Support in Maritime Vessel Traffic Services: A Polymatrix Game Solution,” IEEE Access, vol. 13, pp. 74375–74395, 2025, doi: 10.1109/ACCESS.2025.3564718.
T. Yao and H. Jin, “A Personalized Lane-Changing Decision System Based on Improved Stackelberg Game and Traffic Flow Information,” IEEE Trans. Intell. Transp. Syst., vol. 26, no. 5, pp. 6789–6801, 2025, doi: 10.1109/TITS.2025.3531921.
E. L. Amalia, R. A. RDA, and A. N. Pratama, “Sistem Pendukung Keputusan Menentukan Lovebird Unggul dalam Perlombaan Menggunakan Metode AHP-Topsis,” Matics, vol. 11, no. 1, p. 21, 2019, doi: 10.18860/mat.v11i1.7690.
M. Bampatsikos, I. Politis, T. Ioannidis, and C. Xenakis, “Trust Score Prediction and Management in IoT Ecosystems Using Markov Chains and MADM Techniques,” IEEE Trans. Consum. Electron., vol. 71, no. 1, pp. 862–882, 2025, doi: 10.1109/TCE.2025.3531045.
W. A. Khan, M. Bushra, T. T. Nguyen, M. H. Pham, and H. van Pham, “Some Novel Concepts of Bipolar Picture Fuzzy Influence Graphs Models With Application Toward MADM,” IEEE Access, vol. 13, pp. 15773–15794, 2025, doi: 10.1109/ACCESS.2025.3530009.
S. Abootalebi, A. Hadi-Vencheh, and A. Jamshidi, “Ranking the Alternatives With a Modified TOPSIS Method in Multiple Attribute Decision Making Problems,” IEEE Trans. Eng. Manag., vol. 69, no. 5, pp. 1800–1805, 2022, doi: 10.1109/TEM.2019.2933593.
L. Yang, L. Li, and L. Wang, “Optimizing AI-Driven EdTech Solutions for Enhanced English Learning: A TOPSIS Approach,” IEEE Access, vol. 13, pp. 79479–79502, 2025, doi: 10.1109/ACCESS.2025.3561694.
Y. Yang, X.-J. Wang, J.-F. Yang, and M.-Q. Jie, “Online Service Platform Product Ranking: An Interval Basic Uncertain Linguistic Information OWA Operator-Based MCGDM Model With Large-Scale Consumer Ratings,” IEEE Trans. Consum. Electron., p. 1, 2025, doi: 10.1109/TCE.2025.3594317.
Z. Shu, “Analysis on ordered weighted averaging operators in different types and applications for decision making,” in 2022 7th International Conference on Intelligent Computing and Signal Processing, ICSP 2022, IEEE, 2022, pp. 353–359. doi: 10.1109/ICSP54964.2022.9778323.
Y. W. Kerk, K. M. Tay, C. H. Jong, and C. P. Lim, “On Ordered Weighted Averaging Operator and Monotone Takagi–Sugeno–Kang Fuzzy Inference Systems,” IEEE Trans. Cybern., vol. 55, no. 4, pp. 1540–1553, 2025, doi: 10.1109/TCYB.2025.3531013.
P. Luukka and J. Stoklasa, “Similarity based TOPSIS with linguistic-quantifier based aggregation using OWA,” in Recent Advances in Business Analytics. Selected papers of the 2021 KNOWCON-NSAIS workshop on Business Analytics, 2022, pp. 45–51. doi: 10.15439/2021b6.
Y. Zhou, J. Zhang, M. Yu, and M. Jiang, “Coordinated Behavioral Ordered Weighted Averaging Operator and Its Application in Group Decision Making,” in 2025 5th International Symposium on Computer Technology and Information Science (ISCTIS), 2025, pp. 1198–1202. doi: 10.1109/ISCTIS65944.2025.11065963.
R. Ferreira, M. Araújo, A. Tereso, and P. Novais, “Strategic and Multidisciplinary Analysis of Increasing Airport Capacity in the Lisbon Region,” in 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), 2024, pp. 756–761. doi: 10.1109/MELECON56669.2024.10608781.
M. Adelina and J. Wibowo, “Pemilihan Karakter pada Permainan Multiplayer Online Battle Arena Dengan Metode AHP ( Analytic Hierarchy Process ),” J. Teknoinfo, vol. 17, p. 119, Jan. 2023, doi: 10.33365/jti.v17i1.2079.
B. Wu, L. Zhang, and W. Hou, “Research on Immersion and Satisfaction Game Design Based on Kano Model and Entropy Weight TOPSIS,” in 2025 6th International Conference on Computer Science, Engineering, and Education (CSEE), 2025, pp. 71–76. doi: 10.1109/CSEE64583.2025.00020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fresy Nugroho, Muhammad Zidan, Tri Mukti Lestari; Dwi Pebrianti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.