Analysis of System Performance Improvement Due to DG Integration on 20kV Feeder Ampelgading

Case Study Using ETAP Simulation

Authors

  • Fajar Maulana Akbar ITN Malang
  • Irrine Budi Sulistiawati ITN MALANG
  • I Made Wartana ITN MALANG

Keywords:

Distributed Generation, Optimal Capacitor Placement, Voltage Profile, Power Loss, ETAP 21.0.1

Abstract

The 20 kV Ampelgading feeder, which is integrated with the Ampelgading Hydropower Plant (PLTA) as a Distributed Generation (DG), still faces technical challenges such as low voltage at the downstream part of the network and relatively high active power losses. These issues are mainly caused by the long distribution line of approximately ±180 km and the uneven load distribution, which results in suboptimal power quality. This research aims to analyze the impact of capacitor bank installation on the voltage profile and line losses of the distribution system. The method employed is a simulation using ETAP 21.0.1 software under peak load conditions as the basis of analysis. The improvement strategy is implemented through the Optimal Capacitor Placement (OCP) method, which recommends the installation of 220 kVAR capacitors at Bus 62, Bus 70, and Bus 80 as the optimal locations based on voltage sensitivity analysis. The simulation results indicate that the capacitor bank injection successfully improves the minimum bus voltage from 0.939 p.u. in the base case to 0.973 p.u., ensuring that all buses meet the lower voltage limit standard of 0.95 p.u. Furthermore, total active power losses are reduced from 93.36 kW to 83.37 kW, representing a decrease of approximately 10.7%. These findings demonstrate that the OCP method is an effective technical solution for optimizing the performance of distribution networks, particularly for feeders with geographical and load characteristics similar to the Ampelgading feeder.

References

T. Hidayat, L. M. Hayusman, and R. Setiawan, “Integrasi Distributed Generation (DG) Pada Sistem Distribusi 20 kV Sebagai Upaya Mengurangi Losses dan Meningkatkan Profil Tegangan,” Industri Inovasi: Jurnal Teknik Industri, vol. 8, no. 2, pp. 22–26, Jan. 1970, doi: 10.36040/industri.v8i2.650.

R. T. Jurnal, “Analisis Drop Tegangan Pada Jaringan Tegangan Menengah Dengan Menggunakan Simulasi Program ETAP,” Energi Kelistrikan, vol. 10, no. 1, pp. 26–37, Feb. 2019, doi: 10.33322/energi.v10i1.321.

H. Suyono, R. N. Hasanah, and T. Utomo, “Analisis Stabilitas Sistem Daya Pada Interkoneksi PLTMH Ampelgading di Gardu Induk Turen,” Jurnal Teknologi Elektro, vol. 6, no. 2, 2012.

S. Baqaruzi and A. Muhtar, “Analisis Jatuh Tegangan dan Rugi-rugi Akibat Pengaruh Penggunaan Distributed Generation Pada Sistem Distribusi Primer 20 kV,” E-Joint Electron. Electr. J. Innov. Technol., vol. 1, no. 1, pp. 20–26, Jul. 2020, doi: 10.35970/e-joint.v1i1.216.

I. N. C. Artawa, I. W. Sukerayasa, and I. A. D. Giriantari, “Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem,” Majalah Ilmiah Teknologi Elektro, vol. 16, no. 3, p. 79, Dec. 2017, doi: 10.24843/MITE.2017.v16i03p13.

E. K. Bawan, “Interkoneksi PLTMH dan Rekonfigurasi Jaringan Terhadap Profil Tegangan dan Rugi Daya Sistem Manokwari,” 2018.

B. A. Candra, “Analisa Pengaruh Operasi On-Grid Pembangkit Terdistribusi Terhadap Profil Tegangan dan Rugi Daya Saluran,” 2019.

A. Asran, M. Jannah, and A. Setiawan, “Simulasi dan Analisa Pemasangan Distributed Generation (DG) Fuel Cell dan Pengaruhnya Terhadap Interkoneksi Sistem Distribusi,” Jurnal Energi Elektrik, vol. 9, no. 2, pp. 1–9, 2020.

S. Jamilah, I. Usrah, and A. Chobir, “Analisis Pengaruh Perubahan Faktor Daya dari Lagging menjadi Leading di Favehotel Tasikmalaya,” JEEE (Jurnal Edukasi Elektro dan Energi), vol. 5, no. 2, pp. 1–7, 2022.

A. Nizar, B. Suprianto, S. I. Haryudo, and M. Wdiyartono, “Analisis Rugi Daya Menggunakan ETAP Pada Jaringan Distribusi 20 kV Penyulang Bagong,” Jurnal Teknik Elektro, vol. 10, 2021.

A. Indra, A. Tanjung, and U. Situmeang, “Analisis Profil Tegangan dan Rugi Daya Jaringan Distribusi 20 kV PT PLN (Persero) Rayon Siak Sri Indrapura Dengan Beroperasinya PLTMG Rawa Minyak,” Jurnal Teknik Elektro, vol. 4, no. 1, 2019.

R. A. El-Sehiemy, A. M. Azmy, E. E. Elattar, and A. F. Zobaa, “Optimal Capacitor Placement in Distribution Systems for Power Loss Reduction and Voltage Profile Improvement,” IET Generation, Transmission & Distribution, vol. 10, no. 1, pp. 210–218, 2016, doi: 10.1049/iet-gtd.2015.0799.

S. Sultana and P. K. Roy, “Multi-objective Quasi-oppositional Teaching Learning Based Optimization for Optimal Location of Distributed Generator in Radial Distribution Systems,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 534–545, Dec. 2014, doi: 10.1016/j.ijepes.2014.06.023.

M. Doostan, A. A. Gharaveisi, and H. Narimani, “Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 401–411, Jun. 2016, doi: 10.1016/j.ijepes.2016.01.046.

S. M. Leghari, H. A. Soomro, M. A. Uqaili, and S. A. Shaikh, “A Comprehensive Review on Optimal Integration of Distributed Generation and Capacitor Banks in Distribution Networks,” Energies, vol. 15, no. 21, p. 8258, Nov. 2022, doi: 10.3390/en15218258.

Downloads

Published

2025-08-28

How to Cite

Akbar, F. M., Sulistiawati, I. B., & Wartana, I. M. (2025). Analysis of System Performance Improvement Due to DG Integration on 20kV Feeder Ampelgading: Case Study Using ETAP Simulation. SinarFe7, 7(1), 281–291. Retrieved from https://journal.fortei7.org/index.php/sinarFe7/article/view/726